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Abstract: We study a class of solutions of IIB supergravity which are asymptotically

AdS5 × Y p,q. They have an R × SO(4) × SU(2) × U(1) isometry and preserve half of

the 8 supercharges of the background geometry. They are described by a set of second

order differential equations that we have found and analysed in a previous paper, where we

studied 1/8 BPS states in the maximally supersymmetric AdS5 × S5 background. These

geometries correspond to certain chiral primary operators of the N = 1 superconformal

quiver theories, dual to IIB theory on AdS5 × Y p,q.

We also show how to recover the AdS5×Y p,q backgrounds by suitably doubling the number

of preserved supersymmetries. We then solve the differential equations perturbatively in

a large AdS5 radius expansion, imposing asymptotic AdS5 × Y p,q boundary conditions.

We compute the global baryonic and mesonic charges, including the R-charge. As for

the computation of the mass, i.e. the conformal dimension ∆ of the dual field theory

operators, which is notoriously subtle in asymptotically AdS backgrounds, we adopt the

general formalism due to Wald and collaborators, which gives a finite result, and verify the

relation ∆ = 3R/2, demanded by the N = 1 superconformal algebra.
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1. Introduction

One of the most impressive checks of the AdS/CFT has been obtained a few years ago [1],

where a very precise correspondence between supergravity geometries and states in the

dual SU(N) N = 4 Yang-Mills theory on R × S3 has been established at the 1/2 BPS

level. More precisely, the free-fermion picture arising in the large N gauge theory reduced

on S3 and restricted to the 1/2 BPS sector, has been shown to appear quite precisely in

the exact solution of the 1/2 BPS geometries on the supergravity side. This goes beyond

the giant graviton regime, which corresponds to probe D3 branes wrapped on S3’s either

in AdS5 or S5 [2 – 5] , in the sense that it captures the full gravitational backreacted

geometry. Attempts to generalise this picture to less supersymmetric geometries/states

appeared recently in [6 – 12]. An important class of non-local normalizable states (Wilson

lines) and the corresponding dual geometries were studied in [13, 14]

Of course, another, but related, direction to explore would be to consider BPS states in

less supersymmetric bulk theories. Interesting examples are the dual pairs given by string
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theory on AdS5 × Y p,q and certain N = 1 Superconformal Quiver Gauge Theories, which

have been subject of intense study recently. In [15, 16] the explicit metric on a class of

Sasaki Einstein manifolds Y p,q was constructed. A direct generalisation of the AdS/CFT

correspondence relates Type IIB String Theory on AdS5 ×Y p,q, with N = 1 Quiver Gauge

Theories [17]. The parameters are identified as follows

L2
AdS

4πℓ2s
=

(

λ

4π

π3

V ol(Y p,q)

)
1

2

gs =
λ

N
. (1.1)

Every Y p,q manifold has an SU(2) × U(1) × U(1) isometry group and the AdS5 × Y p,q

solutions preserve 8 of the original 32 supersymmetries of type IIB supergravity. Super-

symmetric branes wrapping cycles in Y p,q have been analysed in the probe approximation

in [18, 19] and they may be considered as generalisations of giant gravitons. Dual giant

gravitons were studied in [21, 22]. A distinguishing feature of the Y p,q manifolds, unlike

S5, is the presence of a non-trivial 3-cycle. D3-branes can thus wrap such a non trivial

cycle and be stable: such branes are dual to baryons in the gauge theory, the so called

dibaryons, which are built out of products of N chiral superfields [20]. Correspondingly,

on the supergravity side there is a gauge field coming from the four-form Ramond-Ramond

gauge field, which is dual to the baryonic current of the Gauge Theroy.

In the quiver gauge theories associated to Y p,q manifolds, there are 2p SU(N) gauge

groups and 4 types of chiral superfields, X, Y , Ui and Vi, i = 1, 2 in the bifundamental

of SU(N) × SU(N), with the precise gauge assignments encoded in the quiver diagram.

The fields U and V are furthermore doublets of an SU(2) flavour symmetry. With a

generic superfield Aβα, α ∈ N and β ∈ N̄, in the bifundamental of SU(N) × SU(N),

one can construct dibaryonic gauge singlets ǫα1,...,αN ǫ
β1,...,βNAα1

β1
· · ·AαNβN The dibaryons

constructed with the SU(2) doublets Ui and Vi are furthermore in the N + 1 dimensional

representation of SU(2). In addition to baryonic-like operators one can construct also

mesonic-like operators, which are neutral under the baryonic charge. These are the precise

analogs of giant gravitons of the N = 4 theory. In any case, since our geometries preserve

an SU(2), in addition to R × SO(4) ×U(1), they correspond to SU(2) singlet operators on

the gauge theory side, e.g. those constructed with the chiral superfields X and Y . The

three U(1) charges, i.e. the R-charge, a flavour U(1) and the baryonic charge, will appear

as integration constants in our asymptotic solutions.

In [12] solutions of the type IIB equations of motion with non trivial R-R 5-form and

R × SO(4) × SU(2) × U(1) isometry group preserving 4 supercharges have been studied.

AdS5×Y p,q geometries are clearly contained in this class: the R×SO(4) is the non compact

version of U(1)× SO(4) ⊂ SO(2, 4), while the SU(2)×U(1)×U(1) isometry group of Y p,q

is contained in the generic SU(2) × U(1) bosonic symmetry.

In this paper we first show in detail how to recover the AdS5×Y p,q geometries from the

generic solutions studied in [12] by requiring that additional 4 supercharges be preserved.

We then study 1/2 BPS excitations of such geometries, namely generic 1/8 BPS solutions

of type IIB supergravity with AdS5 × Y p,q asymptotics and R × SO(4) × SU(2) × U(1)

isometry: they represent an expansion of the fully backreacted geometries of D3 branes in

AdS5×Y p,q . The brane source is substituted by flux in the same spirit as in the original [1].
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Such geometries carry three net global U(1) charges which are dual to the R-charge, a

U(1) flavour charge and the baryonic charge of the gauge theory. They are determined by

four scalar functions defined on a halfspace which solve four nonlinear coupled differential

equations. In order to specify the asymptotics and charges of the solutions we solve such

equations perturbatively at large AdS5 radius. The zeroth order fixes the metric and the

RR 5-form as needed to describe correctly the AdS5 ×Y p,q geometries, the first subleading

corrections determine the aforementioned global U(1) charge and the second subleading

correction is necessary to obtain the value of the mass. Solutions which carry only R-

charge have been studied in [23] at the linearised level.

The definition of mass is somewhat subtle in asymptotically AdS spacetimes, [24, 25]

but it is even subtler when one is dealing with states in asymptotically AdS5 ×X5, with

compact X5, due to the fact that the subleading terms in the metric, that in principle

can be used to determine the mass, mix the AdS5 and M5 coordinates. We deal with this

problem by adopting a 10-dimensional version of the general construction of [26], to find

the conserved Hamiltonian and thus the correct definition of the mass. We then determine

the mass of our states and check that the BPS condition, relating the mass to the R-charge,

is indeed satisfied by our asymptotic solutions.

The paper is organised as follows. In section 2 we give a brief summary of the results

of [12]. In section 3 we show how to obtain the AdS5 × Y p,q geometries from the general

solutions. In section 4 we solve the system of differential equations up to second order

in large AdS5 radius (the details of the second order solutions are showed in appendix

A). In section 5 we show how to obtain the R charge and the U(1) flavour charge of the

solutions. In section 6 we discuss subleading corrections to the RR 5-form and derive the

baryon charge of the solutions. In section 7 we discuss how to correctly define the mass for

a space-time which is asymptotically a product with an AdS5 factor. Finally, in section 8

we present some conclusions.

2. Description of 1/8 BPS states

Generic solutions of type IIB Supergravity preserving 4 of the 32 supersymmetries of the

theory and an R× SO(4)× SU(2)×U(1) bosonic symmetry have been constructed pertur-

batively in [12]. The metric takes the form

ds2 = −h−2(dt+ Vidx
i)2 + h2 ρ

2
1

ρ2
3

(T 2δijdx
idxj + dy2) + ρ̃2dΩ̃2

3+

+ ρ2
1

(

(σ1̂)2 + (σ2̂)2
)

+ ρ2
3(σ

3̂ −Atdt−Aidx
i)2 (2.1)

with i = 1, 2; the coordinate y is the product of two of the radii,

y = ρ1ρ̃ > 0 . (2.2)

and the function h is given by

h−2 = ρ̃2 + ρ2
3(1 +At)

2 . (2.3)
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The space is a fibration of a squashed 3-sphere (on which the SU(2) left-invariant 1-forms

σâ are defined) and a round 3-sphere Ω̃3 (on which the SU(2) left-invariant 1-forms σã are

defined) over a four dimensional manifold.

The left invariant 1-forms are given by:

σ1̂ = −1

2
(cos ψ̂ dθ̂ + sin ψ̂ sin θ̂ dφ̂) σ1̃ = −1

2
(cos ψ̃ dθ̃ + sin ψ̃ sin θ̃ dφ̃) (2.4)

σ2̂ = −1

2
(− sin ψ̂ dθ̂ + cos ψ̂ sin θ̂ dφ̂) σ2̃ = −1

2
(− sin ψ̃ dθ̃ + cos ψ̃ sin θ̃ dφ̃) (2.5)

σ3̂ = −1

2
(dψ̂ + cos θ̂ dφ̂) σ3̃ = −1

2
(dψ̃ + cos θ̃ dφ̃) (2.6)

and satisfy the relations (with σa being either σâ or σã)

dσa = ǫabcσ
b ∧ σc . (2.7)

With this normalisation the metric on the unit radius round three sphere is given by

dΩ2
3 = (σ1)2 + (σ2)2 + (σ3)2 . (2.8)

The only non trivial field strength in our Ansatz is the Ramond-Ramond 5-form: it is

more conveniently expressed in terms of the “d-bein”

e0 =h−1(dt+ Vidx
i) (2.9)

ej =h
ρ1

ρ3
Tδji dx

i (2.10)

e3 =h
ρ1

ρ3
dy (2.11)

eâ =

{

ρ1σ
â â = 1, 2

ρ3(σ
3̂ −Aµdx

µ) â = 3
(2.12)

eã =ρ̃σã (2.13)

as

F(5) = 2
(

G̃mne
m ∧ en + Ṽme

m ∧ e3̂ + g̃e1̂ ∧ e2̂
)

∧ ρ̃3dΩ̃3+

2
(

−Gpqep ∧ eq ∧ e1̂ ∧ e2̂ ∧ e3̂ + ⋆4Ṽ ∧ e1̂ ∧ e2̂ − ⋆4g̃ ∧ e3̂
)

, (2.14)

where

Gmn =
1

2
ǫmnpqG̃

pq (2.15)

⋆4Ṽ =
1

3!
ǫmnpqṼ

men ∧ ep ∧ eq (2.16)

⋆4g̃ = g̃e0 ∧ e1 ∧ e2 ∧ e3 . (2.17)

The complete solution can be expressed in terms of four independent functions m,n, p, T

defined on the halfspace (x1, x2, y), as follows

ρ4
1 =

mp+ n2

m
y4 ρ4

3 =
p2

m(mp+ n2)
ρ̃4 =

m

mp+ n2
(2.18)

h4 =
mp2

mp+ n2
At =

n− p

p
Ai = AtVi −

1

2
ǫij∂j lnT (2.19)

– 4 –



J
H
E
P
0
2
(
2
0
0
8
)
0
5
0

and

dV = −y ⋆3 [dn+ (nD + 2ym(n − p) + 2n/y)dy] (2.20)

∂y lnT = D (2.21)

D ≡ 2y(m+ n− 1/y2) , (2.22)

where ⋆3 indicates the Hodge dual in the three dimensional diagonal metric

ds23 = T 2δijdx
idxj + dy2 . (2.23)

The various four-dimensional forms from which the 5-form field strength is constructed

are given by

g̃ =
1

4ρ̃

[

1 − ρ2
3

ρ2
1

(1 +At)

]

(2.24)

Ṽ =
1

2

1

ρ3ρ̃3
d(g̃ρ2

1ρ̃
3) (2.25)

Gρ2
1ρ3 = dBt ∧ (dt+ Vidx

i) +BtdV + dB̂ (2.26)

G̃ρ̃3 =
1

2
gρ2

1ρ̃
3dA+ dB̃t ∧ (dt+ Vidx

i) + B̃tdV + d ˆ̃B , (2.27)

with

B̃t = − 1

16
y2 n− 1/y2

p

d ˆ̃B = − 1

16
y3 ⋆3 [dm+ 2mD dy]

Bt = − 1

16
y2 n

m

dB̂ =
1

16
y3 ⋆3 [dp+ 4yn(p− n)dy] .

(2.28)

The Bianchi identities on F(5) and the integrability condition for (2.20) give three second

order differential equations onm,n, p which, together with (2.21) give a system of nonlinear

coupled elliptic differential equations

y3(∂2
1 + ∂2

2)n+ ∂y
(

y3T 2∂yn
)

+ y2∂y
[

T 2
(

yDn+ 2y2m(n− p)
)]

+ 4y2DT 2n = 0

y3(∂2
1 + ∂2

2)m+ ∂y
(

y3T 2∂ym
)

+ ∂y
(

y3T 22mD
)

= 0

y3(∂2
1 + ∂2

2)p+ ∂y
(

y3T 2∂yp
)

+ ∂y
[

y3T 24ny(n− p)
]

= 0

∂y lnT = D .

(2.29)

3. AdS5 × Y p,q solutions

Taking any solution described in section 2 and assuming rotational symmetry in the {x1, x2}
plane, the bosonic symmetry is enhanced to R × SO(4) × SU(2) × U(1) × U(1). We will

first consider a subset of solutions which preserve 8 supersymmetries (the generic solution

preserves only 4 of them as explained in the previous section). The well known AdS5 ×
Y p,q [16] are clearly contained in this subset: the round S3 is a factor in AdS5, as suggested

by the analysis in [12], with R×SO(4) the non compact version of U(1)×SO(4) ⊂ SO(2, 4),

while the remaining SU(2)×U(1)×U(1) is the isometry group of the generic Y p,q metric.
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3.1 Constraints for enhanced supersymmetry

Since the solutions described in [12] generically preserve only 4 supersymmetries, the

AdS5 × Y p,q geometries will be specified by a set of constraints on the four functions

m,n, p and T . We will now show how these constraints arise.

The supersymmetry parameters that leave invariant our background are the solutions

to the Killing spinor equation

δχM = ∇Mψ +
i

480
FM1M2M3M4M5

ΓM1M2M3M4M5ΓMψ = 0 . (3.1)

As a consequence of the symmetry assumptions we look for a solution ψ of the form

ψ = ε⊗ χ̂⊗ χ̃(b) . (3.2)

Here ε is an 8 component complex spinor and χ̂, χ̃(b) are 2 component complex spinors

defined on the two 3-spheres satisfying

∂

∂ωâ
χ̂ = 0 σ3̂χ̂ = sχ̂ (3.3)

∇′
ãχ̃(b) = b

i

2
σãχ̃(b) (3.4)

where ωâ, ωã are coordinates on the two spheres. ∇′ is the covariant derivative on the unit

radius three sphere and s, b = ±1. The spinor χ̂ is a singlet under the SU(2)L isometry

of the squashed 3-sphere, while the spinors χ̃± transform as the (0, 1
2 ) for upper sign and

(1
2 , 0) for the lower sign, of the SO(4) isometry of the round S3, which is part of AdS5.

The analysis in [12] fixes b = s = 1, i.e. χ̃ has definite chirality in SO(4) and χ̂ is

highest weight of the broken SU(2)R. ε is proportional to some ε0 obeying ε†0ε0 = 1. Since

we have a doublet of χ̃(1), the space of solutions is 2 dimensional and complex giving rise to

4 real preserved supersymmetries. We will show that AdS5 ×Y p,q geometries are obtained

by requiring that spinors with b = −1, s = 1 are also solutions of the equations (3.1). In

this case there are two doublets of χ̃ and thus 8 real solutions to (3.1). This agrees with

what one expects from the N = 1 SCFT side: there, out of the 4 pairs of Killing spinors

ξA±, A = 1, . . . , 4 in the 4 of SU(4) of the N = 4 theory on R × S3, obeying

Dµξ
A
± = ± i

2
σµξ

A
± (3.5)

only the SU(3) singlet ξ± in SU(3) × U(1) ⊂ SU(4) survives in the N = 1 case. This has

SU(4) weights (1
2 ,

1
2 ,

1
2) and, picking the SO(4) inside SU(4) corresponding for example to

the first two entries, we see that it is a singlet of, say, SU(2)L and highest weight of SU(2)R
in the SO(4) ⊂ SU(4). Furthermore, the two signs in (3.5) correspond to the two chiralities

of the SO(4) isometry group of S3. Since this S3 corresponds to the S3 inside AdS5, this

checks with the above requirement of b = ±1.

Due to the conditions on the spinor, χ̂ and χ̃(b) factorise in each component of the

gravitino variation equation which then becomes equivalent to the following system of
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coupled differential and algebraic equations on ε1

[

∇̃µ −
1

4
FµνΞ

ν
mγ

mγ5σ̂1s+ iAµs−
(

G̃/+ Ṽ/γ5σ̂1s+ ig̃s

)

γ5σ̂2γµ

]

ε = 0 (3.7)

[

i

2

ρ3

ρ1
γ5σ̂1 +

1

2
∂/ρ1 + ρ1

(

G̃/+ Ṽ/γ5σ̂1s− ig̃s

)

γ5σ̂2

]

ε = 0 (3.8)

[

i

2

(

2 − ρ2
3

ρ2
1

)

γ5σ̂1 +
1

2
∂/ρ3 +

1

8
ρ2
3F/γ5σ̂1s+ ρ3

(

G̃/− Ṽ/γ5σ̂1s+ ig̃s

)

γ5σ̂2

]

ε = 0 (3.9)

[

i

2
bγ5σ̂2 +

1

2
∂/ρ̃− ρ̃

(

G̃/+ Ṽ/γ5σ̂1s+ ig̃s

)

γ5σ̂2

]

ε = 0. (3.10)

Note that the first equation is a first order differential 4-vector equation for ε while the

last three are algebraic 4-scalar equations.

We now express all the supergravity fields via the functions m,n, p and T of the

previous section. We are thus guaranteed that a solution to the above system with b = s = 1

exists by the analysis in [12]. We now ask that a second solution to these equations exists

for b = −1, s = 1.

We have used Mathematica to solve explicitly the equations. The existence of solutions

implies certain constraints on the background, which are more conveniently expressed in

terms of the metric entries as

1 +At = ρ2
1/ρ

2
3

ρ2
1 − ρ2

3 = S4/ρ2
1

T 2∂y ln(ρ1/ρ3)
[

2ρ2
1/ρ

2
3 − 2 + y∂y ln(ρ1/ρ3)

]

+ y
[

∂r ln(ρ1/ρ3)
]2

= 0

(3.11)

where (r, φ) are polar coordinates in the (x1, x2) plane. Notice that the first two constraints

together with the relation y = ρ1ρ̃ allow us to express the four functions ρ1, ρ3, ρ̃, At in

terms of only one function. The last constraint together with the equation for ∂yT can

be used to eliminate T . Moreover, the three second order differential equations that came

from the integrability condition for the 1/8 supersymmetric geometries are reduced to a

single equation which is more easily expressed in terms of the function z̃

z̃ ≡ 1

2

[

1 + tanh

(

ρ3(1 +At)

ρ̃

)]

(3.12)

1

r
∂r
(

r∂rz̃
)

+ y∂y

{

T 2 1

y

[

∂y z̃ + 4z̃(1 − z̃)
ρ2
1/ρ

2
3 − 1

y

]}

= 0 (3.13)

1For example the first equation is obtained as follows

(∇µ +MΓµ)ψ =

„

∇̃µ −
1

4
ρ3FµνΞ

ν
mΓmΓ3̂ + Aµ

“

Σ
3̂

+ Γ1̂Γ2̂

”

− Aµ∇3̂
+MΓµ

«

ψ =

=

„

∇̃µ −
1

4
ρ3FµνΞ

ν
mΓmΓ3̂ + AµΓ

1̂Γ2̂ +M (Γµ + Aµρ3Γ3̂
)

«

ψ =

=

„

∇̃µ −
1

4
ρ3FµνΞ

ν
mγ

m
σ

3̂ + Aµσ3̂
+Mγµ

«

ψ (3.6)
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where the combination ρ2
1/ρ

2
3 is given by

ρ2
1

ρ2
3

=





1 +
√

1 − 4S4 1−z̃
y2z̃

2





−1

(3.14)

and T can be found by solving the third equation in (3.11). The solution is thus specified

completely by a single function.2

3.2 AdS5 × Y p,q metrics

In this section, we are going to show how the AdS5×Y p,q geometries arise from the generic

description given above. As a first step we present the conditions that should be satisfied

by the 1/4 supersymmetric solutions in order that they factorise into,

AdS5 ×X5 , (3.15)

For some supersymmetric five-manifold X5. These will turn out to be equivalent to a single

first order differential equation which implies the second order equation in (3.13). The

opposite in general cannot be proven: the generic solution preserving 8 supersymmetries

apparently is not factorisable in general.

As a second step we will prove, by giving the explicit coordinate transformation to the

gauge in [16], that the X5 factor is indeed a generic Y p,q manifold.

First of all we switch to the more convenient coordinates (ρ̃, ρ1, φ̃, ψ̂
′) defined by

y = ρ1ρ̃

r = r(ρ1, ρ̃)

φ = φ̃+ c̃ t

ψ̂ = ψ̂′ − 2γ t − 2δ φ ≡ ψ̂′ − (2γ + 2c̃ δ)t− 2δ φ̃

(3.16)

Using the constraints in (3.11) the solution is completely specified once the explicit form

of the function r(ρ1, ρ̃) is known.

The last shift implies that the left invariant one-form σ3̂ is shifted to σ3̂ ′+(γ+ c̃ δ)dt+

δ dφ̃. With a slight abuse of notation we will keep calling this shifted one form σ3̂. The

metric of 2.1 is thus

ds2 = −h−2(dt2 + Vφdφ)2 + h2 ρ
2
1

ρ2
3

(T 2δijdx
idxj + dy2) +

+ρ̃2dΩ2
3 + ρ2

1

[(

σ1̂
)2

+
(

σ2̂
)2]

+ ρ2
3(σ

3̂ −Atdt−Aφdφ)2

= gttdt
2 + gρ̃ρ̃dρ̃

2 + ρ̃2dΩ̃2
3 + 2gtφ̃dtdφ̃+ 2gρ1ρ̃dρ1dρ̃+

+gρ1ρ1dρ
2
1 + gφ̃φ̃dφ̃

2 + ρ2
1

[(

σ1̂
)2

+
(

σ2̂
)2]

+

+ρ2
3

[

σ3̂ +
(

γ −At − c̃(Aφ − δ)
)

dt− (Aφ − δ)dφ̃

]2

, (3.17)

2If, instead of doubling supersymmetry by requiring b = −1 and s = 1 in addition to b = s = 1, one

requires to have solutions of (3.1) also for b = s = −1, then one obtains a different set of constraints on the

background. By making an asymptotic analysis similar to the one we will perform here in section 4, it can

be shown that the resulting geometry describes 1/4-BPS states in the background AdS5 × S5
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with

gtt = −h−2(1 + c̃Vφ)
2 + c̃2h2 ρ

2
1

ρ2
3

T 2r2

gρ̃ρ̃ = h2 ρ
2
1

ρ2
3

[

ρ2
1 + T 2r2

(

∂ ln r

∂ρ̃

)2
]

gtφ̃ = −h−2(1 + c̃Vφ)Vφ + c̃h2ρ
2
1

ρ2
3

T 2r2

gρ1ρ̃ = h2 ρ
2
1

ρ2
3

[

ρ1ρ̃+ T 2r2
∂ ln r

∂ρ̃

∂ ln r

∂ρ1

]

gρ1ρ1 = h2 ρ
2
1

ρ2
3

[

ρ̃2 + T 2r2
(

∂ ln r

∂ρ1

)2
]

gφ̃φ̃ = −h−2V 2
φ + h2 ρ

2
1

ρ2
3

T 2r2

(3.18)

We recall the constraint on the metric components coming from the requirement of 1/4

supersymmetry,

1 +At =
ρ2
1

ρ2
3

ρ2
1 − ρ2

3 =
S4

ρ2
1

h−2 = ρ̃2 + ρ4
1/ρ

2
3.

(3.19)

In order that the metric factorises we need the dt σ3̂ term to vanish which requires that

At + c̃(Aφ − δ) = γ . (3.20)

Imposing also gtφ̃ = 0 we obtain

c̃h2 ρ
2
1

ρ2
3

T 2r2 = h−2(1 + c̃Vφ)Vφ . (3.21)

In order to have an AdS5 factor we should have −gtt = L2 + ρ̃2 which gives, using the last

relation

h−2(1 + c̃Vφ) = L2 + ρ̃2 , (3.22)

We also demand that gρ̃ρ̃ = L2

L2+ρ̃2
which after a little bit of algebra gives

∂ ln r

∂ρ̃
= ± c̃ρ̃

L2 + ρ̃2
. (3.23)

Requiring that we have a product metric means that we also must impose that gρ1ρ̃ = 0

which implies
∂ ln r

∂ρ1
= ∓c̃ ρ3

1

ρ2
3L

2 − ρ4
1

. (3.24)
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As a result we find immediately that

gρ1ρ1 =
ρ2
1L

2

ρ2
3L

2 − ρ4
1

(3.25)

and

gφ̃φ̃ =
1

c̃2

(

L2 − ρ4
1

ρ2
3

)

. (3.26)

The generic solutions to equation (3.23) for the upper sign are

r = (L2 + ρ̃2)c̃/2r0(ρ1)ρ
c̃
1 (3.27)

where we have extracted the ρc̃1 for future convenience. (3.24) is an equation for r0(ρ1)

r′0(ρ1) = c̃
L2(ρ4

1 − S4)

ρ7
1 − L2ρ1(ρ

4
1 − S4)

r0(ρ1) (3.28)

Using the last constraint in (3.11)

T 2∂y ln(ρ1/ρ3)
[

2ρ2
1/ρ

2
3 − 2 + y∂y ln(ρ1/ρ3)

]

+ y
[

∂r ln(ρ1/ρ3)
]2

= 0 (3.29)

we can find T . Note that both the first order differential equation for T

∂y lnT = D (3.30)

and the second order equation in (3.13) are satisfied when r0(ρ1) satisfies the equa-

tion (3.28).

3.3 Relation to standard Y p,q coordinates

Now we show the coordinates transformation that brings the metric on X5 to the standard

metric on Y p,q as presented in [16]. We perform the rescaling

ρ̃→ Lρ̃, ρi → Lρi, S → LS (3.31)

which takes the metric of AdS5 into the form

ds2AdS5
= L2

(

− (ρ̃2 + 1)dt2 +
dρ̃2

ρ̃2 + 1
+ ρ̃2dΩ2

3

)

(3.32)

while the metric on the “internal” part is

ds25 = L2

[

ρ2
1

ρ2
3 − ρ4

1

dρ2
1 +

1

c̃2

(

1 − ρ4
1

ρ2
3

)

dφ̃2+

+ ρ2
1

[(

σ1̂
)2

+
(

σ2̂
)2]

+ ρ2
3

(

σ3̂ − (Aφ − δ)dφ̃
)2
]

. (3.33)

The standard form for the metric on Y p,q [16] is,

ds2 =
1 − cŷ

6
(dθ̂2 + sin2 θ̂dφ̂2) +

1

w(ŷ)q(ŷ)
dŷ2 +

q(ŷ)

9
(dψ̂ + cos θ̂dφ̂)2

+ w(ŷ)

[

dα− ac− 2ŷ + ŷ2c

6(a− ŷ2)
(dψ̂ + cos θ̂dφ̂)

]2 (3.34)
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w(ŷ) =
2(a − ŷ2)

1 − cŷ

q(ŷ) =
a− 3ŷ2 + 2cŷ3

a− ŷ2
.

(3.35)

Recalling that

σ1̂ = −1

2
(cos ψ̂ dθ̂ + sin ψ̂ sin θ̂ dφ̂)

σ2̂ = −1

2
(− sin ψ̂ dθ̂ + cos ψ̂ sin θ̂ dφ̂) (3.36)

σ3̂ = −1

2
(dψ̂ + cos θ̂ dφ̂)

we immediately get

ρ2
1 =

2

3
(1 − cŷ) (3.37)

and
1

4
ρ2
3 =

2 + ac2 − 6cŷ + 3c2ŷ2

18(1 − cŷ)
. (3.38)

Recalling that ρ2
1 − ρ2

3 = S4/ρ2
1 we have

S4 =
4

27
(1 − ac2) . (3.39)

We also have

Aφ =
1

c̃
(γ −At) + δ =

1

c̃

(

γ + 1 − ρ2
1

ρ2
3

)

+ δ . (3.40)

Assuming that α = βφ̃ and equating the dφ̃2 component of the metric we get

1

c̃2

(

1 − ρ4
1

ρ2
3

)

+ ρ2
3(Aφ − δ)2 = w(ŷ)β2 (3.41)

which implies after some straightforward algebra that

γ =
1

2
, β = ± c

2c̃
. (3.42)

The coefficient of the cross term dφ̃ σ3̂ is

1

2
ρ2
3(Aφ − δ) = −βw(ŷ)

ac− 2ŷ + ŷ2c

6(a− ŷ2)
(3.43)

which implies that we must have β = − c
2c̃ . We can therefore set

β = −1 c̃ =
1

2
c . (3.44)

3Notice that the ψ̂ of [16] has the opposite sign to that used here.
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Using the expression for r

r = (L2 + ρ̃2)c̃/2r0(ρ1)ρ
c̃
1

r′0(ρ1) = c̃
L2(ρ4

1 − S4)

ρ7
1 − L2ρ1(ρ4

1 − S4)
r0(ρ1)

(3.45)

and the definition

Aφ = AtVφ +
1

2
r∂r lnT (3.46)

we get

At + c̃(Aφ − δ) =
1

2
− c̃

2
(1 + 2δ) (3.47)

which gives

δ = −1

2
(3.48)

for c, c̃ 6= 0. Finally, the matching of the dŷ2 factor

1

9

c2

ρ2
3 − ρ4

1

=
1

w(ŷ)q(ŷ)
(3.49)

is identically satisfied. Finally, we observe that the polynomial q(ŷ) = a − 3ŷ2 + 2cŷ3,

whose zeroes ŷ1 and ŷ2, with ŷ1 < 0 and ŷ2 the smallest between the two other positive

zeroes, determine the range of ŷ, ŷ1 ≤ ŷ ≤ ŷ2, can be expressed in terms of ρ1 as q =

−27(ρ6
1 − ρ4

1 + S4)/4. Notice also that in the metric (3.34) any non zero value of c can be

reabsorbed in a rescaling of ŷ and α. We may thus set c = 1 whenever c 6= 0.

c=0 case. Let us now take a look at the singular case

c = c̃ = 0 (3.50)

which corresponds to the Sasaki-Einstein internal manifold Y 1,0 ≡ T 1,1. From the equa-

tions (3.21),(3.47) we can immediately obtain

At = γ =
1

2

Vφ = 0
(3.51)

and from (3.37),(3.38),(3.39)

ρ2
1 = ρ3 =

2

3

S =
4

27
.

(3.52)

Notice that the equation for ρ1 implies

y =

√

2

3
L2ρ̃ (3.53)

Given these explicit values for ρ1 and ρ3, the last constraint in (3.11)

T 2∂y ln(ρ1/ρ3)
[

2ρ2
1/ρ

2
3 − 2 + y∂y ln(ρ1/ρ3)

]

+ y
[

∂r ln(ρ1/ρ3)
]2

= 0 (3.54)
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is automatically satisfied.

The metric on the internal manifold becomes

ds25 = L2

[

3

2
τ(r)2

(

dr2

r2
+ dφ̃2

)

+
2

3

[(

σ1̂
)2

+
(

σ2̂
)2]

+
4

9

(

σ3̂ − (Aφ − δ)dφ̃
)2
]

(3.55)

where

T 2 = (ρ̃2 + 1)
τ(r)2

r2
(3.56)

is such that T solves the equation

∂y lnT = D ⇐⇒ ∂ρ̃ lnT =
2ρ̃

ρ̃2 + 1
(3.57)

We now match this expression with the one in [16]. For c = 0, a can be reabsorbed in

a coordinate redefinition. We set, for convenience,

a = 3 (3.58)

and obtain,

ds2 =
1

6
(dθ̂2 + sin2 θ̂dφ̂2) +

1

6(1 − ŷ2)
dŷ2 +

1 − ŷ2

3(3 − ŷ2)
(dψ̂ + cos θ̂dφ̂)2

+ 2(3 − ŷ2)

[

dα+
2ŷ

6(3 − ŷ2)
(dψ̂ + cos θ̂dφ̂)

]2 (3.59)

Assuming, as in the generic case, α ≡ −φ̃, and equating the g3α and gαα components we

get

Aφ − δ = −3ŷ (3.60)

and
3

2
τ2 + 4ŷ2 = 2(3 − ŷ2) ⇒ τ2 = 4(1 − ŷ2) (3.61)

Assuming r = r(ŷ) and equating the dŷ2 term gives

∂ ln r

∂ŷ
= ± 1

6(1 − ŷ2)
⇒ r = λ

(

1 − ŷ

1 + ŷ

)∓1/12

(3.62)

where λ is an arbitrary constant and we fix λ = 1. We are now able to determine the

constant δ through the equation

Aφ = AtVφ +
1

2
r∂r lnT = −1

2
∓ 3ŷ (3.63)

which fixes the upper choice for the sign and

δ = −1

2
(3.64)

In order to bring the metric to the standard T 1,1 form we set

ŷ = − cos θ̃ (3.65)
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which gives

r =

(

tan
θ̃

2

)1/6

, τ = 4 sin2 θ̃ (3.66)

and thus

ds25
L2

=
1

6

(

dθ̃2 + 36 sin2 θ̃dφ̃2
)

+
1

6

(

dθ̂2 + sin θ̂dφ̂2
)

+
1

9

(

dψ̂ + cos θ̂dφ̂+ 6cos θ̃dφ̃
)2

(3.67)

which is the T 1,1 metric up to the trivial rescaling

φ̃→ 1

6
φ̃ (3.68)

4. Asymptotic expansion for half BPS states in AdS5 × Y p,q

In this section we study generic asymptotic perturbations of the AdS5×Y p,q geometries that

preserve 1/2 of the bulk supersymmetries. We relax the constraints of (3.11) which give

back AdS5 × Y p,q and solve the differential equations (2.29) with the boundary conditions

that the solutions approach AdS5 × Y p,q at large distances (including also the particular

case c = 0). We will work in the somewhat mixed coordinates (y, ŷ) or (y, θ̃) and solve the

equation in an expansion for large y, with the simplifying assumption that the solutions

are invariant under shifts in φ̃. We make the following Ansatz for the expansion of our

functions,

ρ1 = L

√

2

3
(1 − cŷ)

(

1 + ρ
(1)
1 (ŷ)

L4

y2
+ ρ

(2)
1 (ŷ)

L8

y4

)

(4.1)

ρ3 = L

√

2(2 + ac2 − 6cŷ + 3c2ŷ2)

9(1 − cŷ)

(

1 + ρ
(1)
3 (ŷ)

L4

y2
+ ρ

(2)
3 (ŷ)

L8

y4

)

(4.2)

ρ̃ =
y

ρ1
(4.3)

At =
1 − ac2

2 + ac2 − 6cŷ + 3c2ŷ2

(

1 +A
(1)
t (ŷ)

L4

y2
+A

(2)
t (ŷ)

L8

y4

)

(4.4)

T =
y

r

√

2(a− 3ŷ2 + 2cŷ3)

(1 − cŷ)3

(

1 + t(1)(ŷ)
L4

y2
+ t(2)(ŷ)

L8

y4

)

(4.5)

Vφ =
4c(1 − cŷ)(a− 3ŷ2 + 2cŷ3)

3(2 + ac2 − 6cŷ + 3c2ŷ2)

L4

y2
+ V

(2)
φ (ŷ)

L8

y4
+ V

(3)
φ (ŷ)

L12

y6
(4.6)

r = yc/2r0(ŷ) (4.7)

This expansion reproduces the c = 0 limit upon setting a = 3, as in the previous section.

In these coordinates, the condition (3.28) becomes

r′0(ŷ) =
2 + ac2 − 6cŷ + 3c2ŷ2

4(1 − cŷ)(a− 3ŷ2 + 2cŷ3)
r0(ŷ) (4.8)
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The functions m,n, p are given by

m =
1

ρ2
3[ρ̃

2 + (1 +At)2ρ2
3]

(4.9)

n =
(1 +At)ρ

2
1

y2[ρ̃2 + (1 +At)2ρ2
3]

(4.10)

p =
ρ2
1

y2[ρ̃2 + (1 +At)2ρ
2
3]
. (4.11)

The constraints in (3.11) and the equations (3.12) are satisfied at leading order in y. We

rewrite the generic equations (2.29) in polar coordinates dividing them by T 2 and exploiting

the U(1) symmetry of our solutions

y3

r2T 2
r∂r(r∂rn) + ∂y

(

y3∂yn
)

+ y2∂y
[(

yDn+ 2y2m(n− p)
)]

+2y2D(2n+ y∂yn+ yDn) = 0

y3

r2T 2
r∂r(r∂rm) + ∂y

(

y3∂ym
)

+ ∂y
(

y32mD
)

+ 2Dy3(∂ym+ 2Dm) = 0

y3

r2T 2
r∂r(r∂rp) + ∂y

(

y3∂yp
)

+ ∂y
[

y34ny(n− p)
]

+ 2Dy3[∂yp+ 4ny(n− p)] = 0

∂y lnT = D .

(4.12)

where

∂yf(y, ŷ) ≡ df

dy

∣

∣

∣

∣

r

= −c r0(ŷ)
2r′0(ŷ)

df

dŷ

∣

∣

∣

∣

y

+
df

dy

∣

∣

∣

∣

ŷ

(4.13)

r∂rf(y, ŷ) ≡ r
df

dr

∣

∣

∣

∣

y

=
r0(ŷ)

r′0(ŷ)

df

dŷ

∣

∣

∣

∣

y

(4.14)

The generic asymptotic solutions to these equation are specified, at each order, by 7

integration constants. As in [12], requiring regularity of the solutions implies that not all

of them are independent and indeed we have only three independent integration constants.

For the case of T 1,1 asymptotics, specified by c = 0 the first subleading corrections are

given by:

ρ
(1)
1 (θ̃) = −k + C1 cos θ̃ (4.15)

ρ
(1)
3 (θ̃) = ρ

(1)
1 (θ̃) + k(1)(θ̃) (4.16)

k(1)(θ̃) = k (4.17)

A
(1)
t (θ̃) = C2 − 4C1 cos θ̃ (4.18)

t(1)(θ̃) =
L2
√

2/3(1 + 9k) sin θ̃

tan θ̃
2

(4.19)

V
(2)
φ (θ̃) = −8

3
C2 sin2 θ̃ (4.20)
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while in the generic case we get:

ρ
(1)
1 (ŷ) =

A[2c2K + 9Ak + 4ŷBC1]

6(2 + ac2 − 6cŷ + 3c2ŷ2)

ρ
(1)
3 (ŷ) =ρ

(1)
1 (ŷ) + k(1)(ŷ)

k(1)(ŷ) =
A[4c2LK + 9

(

− 2 + 8cŷ − 3c3ŷ3 − ac2(4 − cŷ)
)

k]

6(2 + ac2 − 6cŷ + 3c2ŷ2)

A
(1)
t (ŷ) =

−4c2A3K

(2 + ac2 − 6cŷ + 3c2ŷ2)2
+

2A

L
C2 −

4

3
AC1+

− 9c2 A[a2c2+ŷ2(12−26cŷ+21c2ŷ2−6c3ŷ3)+2a(−2+3cŷ−3c2ŷ2+c3ŷ3)]

2LB
k

t(1)(ŷ) =
A(4L− 27k)

6B

where

A = 1 − cŷ

B = 2 + ac2 − 6cŷ2 + 2cŷ3

K = a− 3ŷ2 + 2cŷ3

L = 1 − ac2

The three arbitrary integration constants, C1, C2, k will turn out to be related to the

supergravity dual of the flavour and baryon charge of the solutions. The second order

regular solutions are rather complicated. In general, they will involve new integrations

constants together with a inhomogeneous part. The expressions for the inhomogeneous

part can be found in the appendix.

As already noticed, any c 6= 0 can be reabsorbed by a redefinition of ŷ and so we set

c = 1.

5. U(1) charges

We will now show how the first subleading corrections described in the previous section give

rise to the Kaluza-Klein reduction of type IIB supergravity on the Y p,q manifolds respecting

the symmetry of our Ansatz. We will calculate the global charges of the solutions under

three U(1) massless KK gauge fields living in AdS5; two of them can be identified with

the KK modes of the metric associated to the Killing vectors ∂α and ∂ψ̂ and which are

dual to the flavour and R charges of the dual quiver gauge theory (more precisely to linear

combinations of the charges) while the third one is associated to the expansion of the RR

4-form potential on the cohomology of Y p,q and it is dual to the baryon charge of the

gauge theory. Since the third Betti number of such manifolds is one there is only one

baryon charge.

In general, the metric on the compact manifold is modified by the metric KK gauge

fields as

ds2 = gαβ(dξ
α +Kα

I A
I
µdx

µ)(dξβ +Kβ
I A

I
µdx

µ) (5.1)
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where ξα are coordinates in Y p,q and xµ in AdS5 and

KI = Kα
I ∂α I = 1, . . . , n (5.2)

are n Killing vectors of Y p,q. In our case, only two gauge fields are turned on and they are

associated to ∂α and ∂ψ̂. We denote the two global gauge charges respectively as J and Q.

The leading order of the corresponding gauge fields AJ , AQ is thus given by

AJ =
J

ρ̃2
dt AQ =

Q

ρ̃2
dt . (5.3)

The metric is modified by the shifts

dψ̂ → dψ̂ +
Q

ρ̃2
dt (5.4)

dα→ dα+
J

ρ̃2
dt (5.5)

to

ds2L−2 =
1 − cŷ

6
(dθ̂2 + sin2 θ̂dφ̂2) +

1

w(ŷ)q(ŷ)
dŷ2 +

q(ŷ)

9

(

dψ̂ +
Q

ρ̃2
dt+ cos θ̂dφ̂

)2

+ w(ŷ)

[

dα+
J

ρ̃2
dt− ac− 2ŷ + ŷ2c

6(a− ŷ2)

(

dψ̂ +
Q

ρ̃2
dt+ cos θ̂dφ̂

)]2

. (5.6)

Given the expression above for the metric and the solution of the equations of motion

up to the first sub-leading order we obtain

Q = 3C2 − 2C1, (5.7)

J =
1

2
C2 − C1. (5.8)

Similarly, in the case of T 1,1 we have

ds2L−2 =
1

6

(

dθ̃2 + 36 sin2 θ̃

(

dφ̃+
J

ρ̃2
dt

)2)

+
1

6

(

dθ̂2 + sin θ̂dφ̂2
)

+

+
1

9

(

dψ̂ +
Q

ρ̃2
dt+ cos θ̂dφ̂+ 6cos θ̃

(

dφ̃+
J

ρ̃2
dt

))2

(5.9)

with

Q =
3

2
C2 (5.10)

J = −C1 (5.11)
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R-charge and Reeb vector. In order to correctly identify the R charge we proceed as

in [27, 16, 28]. We define the new coordinates

ψ̂′ = ψ̂ (5.12)

β = −6α+ cψ̂ (5.13)

In this coordinate system we can write the metric as a local U(1) fiber over a Kaehler-

Einstein manifold and ψ̂′ is a coordinate on the local U(1) fiber. From (2.17) of [16], we

have

dΩ2
Y p,q = (eθ̂)2 + (eφ̂)2 + (eŷ)2 + (eβ)2 + (eψ̂)2 (5.14)

where the one forms on Y p,q are,

eθ̂ =

√

1 − cŷ

6
dθ̂ , eφ̂ =

√

1 − cŷ

6
sin θ̂dφ̂ , (5.15)

eŷ =
1√
wq

dŷ , eβ =

√
wq

6
(dβ + c cos θ̂dφ̂) , (5.16)

eψ̂
′

=
1

3
(−dψ̂′ − cos θ̂dφ̂+ ŷ(dβ + c cos θ̂dφ̂)) . (5.17)

As noted in [27], the R-symmetry is identified with a shift in the angular variable

ψR = −1

2
ψ̂′ (5.18)

at constant β. As a consequence, the U(1) R-symmetry gauge field is given by

AR = −1

2
AQ (5.19)

and

QR = −1

2
Q . (5.20)

The associated Killing vector is given by

KR = −2∂ψ̂ − c

3
∂α (5.21)

which coincides with the Reeb vector of the Sasaki-Einstein manifold. Notice that our

Reeb vector differs by a factor of 2/3 from the one in [15, 16].

6. The 5-form and baryon charge

The self-dual Ramond-Ramond field strength F(5) can be written as

F(5) = F5 + ⋆10F5 . (6.1)

With our conventions and normalisations, the leading order for F5 is given by

F0
5 = L4V ol(Y p,q) (6.2)
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where V ol(Y p,q) is the volume form of the unit radius Y p,q. The background metric is

perturbed by the KK gauge fields as described in the previous section: the field strength

is also perturbed in order to satisfy the equations of motion. The corrections are known

to be of the form [27 – 29]

F1
5 = L4d (AQ ∧ ωQ +AJ ∧ ωJ +AB ∧ ωB) . (6.3)

The Y p,q three forms ωI are defined by

dωI + ιKIV ol(Y
p,q) = 0 (6.4)

where KI , I = J,Q is the Killing vector of Y p,q associated with the AI gauge field. The

3-forms ωJ,Q are clearly defined up to the addition of a closed form. The 3-form ωB is the

generator of the one dimensional cohomology of the Sasaki-Einstein manifold and AB is

the gauge field dual to the baryon current of the CFT. The arbitrary shift by a closed form

of the ωJ,K corresponds to the possibility of shifting the mesonic symmetries of the theory

by an arbitrary baryonic one.

In the case of generic Y p,q for c 6= 0 we obtain the following form for the subleading

corrections to F(5),

F1
5 = − 2

ρ̃3
dρ̃ ∧ dt ∧

{

k

4

〈

(

σ3̂ − 3ŷ(1 − ŷ)dα
)

σ1̂ ∧ σ2̂ − 3

2(1 − ŷ)2
σ3̂ ∧ dα ∧ dŷ

]

+

+
Q

9

[(

a−1

3
σ3̂− a−2ŷ(a−1)−3ŷ2+2ŷ3

2(1 − ŷ)
dα

)

σ1̂∧σ2̂+
2 + a− 6ŷ + 3ŷ2

4(1 − ŷ)2
σ3̂∧dα∧dŷ

]

+
J

3

[(

a− 2ŷ + ŷ2

3
σ3̂− a− 2aŷ + ŷ2

2(1 − ŷ)
dα

)

σ1̂∧σ2̂ − a− 2ŷ + ŷ2

2(1 − ŷ)2
σ3̂∧dα∧dŷ

]}

+

+
1

ρ̃2
dt ∧

(

−Q
2(1 − ŷ)

9
dα− J

4(1 − ŷ)

9
σ3̂

)

∧ dŷ ∧ σ1̂ ∧ σ2̂ (6.5)

while for the case c = 0 and going to the natural coordinate (θ̃, φ̃) defined by (ŷ, α) =

(− cos θ̃,−φ̃) we get

F1
5 =− 2

ρ̃3
dρ̃ ∧ dt

{

− k

6

[(

2σ3̂ − 6 cos θ̃dθ̃ ∧ dφ̃
)

σ1̂ ∧ σ2̂ − 3 sin θ̃σ3̂ ∧ dθ̃ ∧ dφ̃
]

+
Q

9

[(

1

3
σ3̂ − cos θ̃dφ̃

)

σ1̂ ∧ σ2̂ +
1

2
sin θ̃σ3̂ ∧ dθ̃ ∧ dφ̃

]

+
J

3

[(

− 4

3
cos θ̃σ3̂+

1

2
(1+7 cos 2θ̃)dφ̃

)

σ1̂∧σ2̂+
1

2
sin 2θ̃σ3̂∧dθ̃∧dφ̃

]}

+
1

ρ̃2
dt∧

(

Q
2

9
dφ̃+ J

4

9
σ3̂

)

∧ sin θ̃dθ̃ ∧ σ1̂ ∧ σ2̂ (6.6)

The volume form on Y p,q is given by4

Vol(Y p,q) = −eŷ ∧ eβ ∧ eθ̂ ∧ eφ̂ ∧ eψ̂′

=
4(1 − cŷ)

9
dŷ ∧ dα ∧ σ1̂ ∧ σ2̂ ∧ σ3̂ , (6.7)

4The orientation is chosen to satisfy (6.2)
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and we define the three forms

ω± ≡ eψ̂
′ ∧ (eθ̂ ∧ eφ̂ ± eŷ ∧ eβ) =

=
1

3

(

2σ3̂(1 − cŷ) − 6ŷdα
)

∧
(

2(1 − cŷ)

3
σ1̂ ∧ σ2̂ ∓ 1

3
dŷ ∧ (cσ3̂ + 3dα)

)

(6.8)

The local Kähler form J2 is given by

J2 = eθ̂ ∧ eφ̂ − eŷ ∧ eβ =
1

2
deψ̂

′

(6.9)

The closed form ωB is given as in [28] by

ωB =
9

8π2(1 − cŷ)2
(p2 − q2)ω− (6.10)

With this normalisation and assuming that AB = QB
ρ̃2

dt, the baryon charge QB is given by

QB =
π2

2(p2 − q2)
k . (6.11)

In the case of T 1,1 and recalling the change of coordinates (ŷ, α) = (− cos θ̃,−φ̃) we get

ω± =

(

2

3
σ3̂ − 2 cos θ̃dφ̃

)

∧
(

2

3
σ1̂ ∧ σ2̂ ± sin θ̃dθ̃ ∧ dφ̃

)

(6.12)

with

ωB ≡ 9

8π2
ω− (6.13)

and

QB =
2π2

3
k . (6.14)

We now rewrite the expansion of F1
5 as

F1
5 = L4d (AR ∧ ωR +Aβ ∧ ωβ +AB ∧ ωB) . (6.15)

where

AR = −1

2
AQ, Aβ = −6AJ −AQ (6.16)

are the gauge fields associated to the Killing vectors

KR = −2∂ψ̂ − 1

3
∂α, ∂β = −1

6
∂α . (6.17)

The remaining 3-forms are given by

ωR = − 1

6
ω+ (6.18)

ωβ = − (a− 2ŷ + ŷ2)

18
σ3̂ ∧

(

2

3
σ1̂ ∧ σ2̂ − 1

2(1 − ŷ)2
dα ∧ dŷ

)

+ (6.19)

− a− 2aŷ + ŷ2

18(1 − ŷ)
dα ∧ σ1̂ ∧ σ2̂ . (6.20)

It can be shown without difficulty that they satisfy the expected relations

dωR + ι(−2∂
ψ̂
− 1

3
∂α)V ol(Y

p,q) = 0 , (6.21)

dωJ + ι∂βV ol(Y
p,q) = 0 . (6.22)
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7. Mass in asymptotically AdS5 × X5

In this section we derive the expression for the mass in the asymptotically AdS5 × Y p,q

spacetimes under examination. There has been a considerable amount of work over the

years on the definition of mass and other conserved charges in general relativity. The issue

becomes even subtler in the case of the definition of the mass in asymptotically AdS spaces.

For example, the standard expression given in terms of a Komar integral gives a divergent

result in this case, and the procedure of renormalisation is ambiguous. We will follow the

definition of conserved charges given by Wald and collaborators [26, 25] which provides

a possible general framework for addressing this issue, and apply it to our case for the

computation of the mass. Since our solutions mix beyond the leading order AdS and Y p,q

coordinates, it is natural to take a ten dimensional approach for the definition of mass,

which has the advantage of being relatively simple both from the conceptual and from the

technical point of view.

Another derivation of conserved charges applicable to spacetime with AdS asymptotics

(more precisely asymptotically locally AdS spacetimes) was presented in [30]. Using non

linear KK mapping one can also uplift this derivation to ten dimensional asymptotically

AdS5 ×X5 backgrounds [31, 32].

The main result of this section is to prove that, with the adopted definition of mass,

the expected BPS relation:

ML =
3

2
R (7.1)

which is a consequence of the N = 1 superconformal algebra on the field theory side, is

satisfied.

7.1 Definition of charges in asymptotically AdS5 ×X5

We are dealing with an asymptotically AdS5 × X5 spacetime, where X5 is a compact

manifold.

It is convenient to choose coordinates such that, defining a radial AdS coordinate Ω,

gΩΩ = L2/Ω2 and gΩM = 0 for M 6= Ω, M denoting a ten dimensional coordinate. We will

also denote the AdS coordinates with µ, ν, . . . and the internal coordinates with a, b, . . . .

At leading order for large Ω we have

ds2 =
L2

Ω2

[

dΩ2 − dt2 + dΩ2
3

]

+ L2ds2(Y p,q) . (7.2)

We will keep corrections to orders Ω2k, with k = 0, 1, 2 for the AdS part, gµν , k = 1, 2

for the internal, gab, and mixed parts, gµa respectively. There are of course corrections of

higher order in Ω to the background 5-form given by the volume forms on AdS5 and Y p,q

which we will discuss later.

In general the construction of conserved charges proceeds as follows: let us denote

for the moment as ϕ the generic field appearing in a Lagrangian L. The variation of the

Lagrangian with respect to ϕ is given by

δL = E(ϕ)δϕ + dθ(ϕ, δϕ) . (7.3)
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where E(ϕ) denotes the equations of motion. This defines the symplectic potential θ,

corresponding to the boundary term that arises from integrating by parts in order to

remove derivative of δϕ. It is a 9-form in spacetime.

We will be interested in the following asymptotic symmetry generator

ξ =
∂

∂t
(7.4)

We want to identify the Hamiltonian generator Hξ of such symmetry. Its value on the

desired solution will be our definition of the mass of the metric 5 Hξ is defined via its

variation with respect to a generic fluctuation δφ, obeying the linearised equations of

motion in a given background obeying the full equations of motion [26]:

δHξ =

∫

∂Σ
(δQξ − ξ · θ) (7.5)

where Σ is a 9 dimensional submanifold of the spacetime without boundary, a “slice”

corresponding to the vector field ξ. By the integral over ∂Σ we mean a limiting process in

which the integral is first taken over the boundary ∂K of a compact region inside Σ and

then K approaches Σ in a suitable manner. The 8-form Qξ is the Noether charge of the

asymptotic symmetry ξ. It has a contribution coming from the gravitational lagrangian:

Qgrav
α1···α8

= − 1

16πG10
∇bξcǫbca1···a8 . (7.6)

where ǫ =
√− det g d10x is the volume form. Also, the gravitational contribution to θ is:

θgrav
a1···a9 =

1

16πG10
vaǫaa1···a9 (7.7)

with

va = ∇bδg a
b −∇aδg b

b (7.8)

Finally, the RR 5-form contributes both to Qξ and θ, giving rise to a single term in

the combination δQxi− ξ · θ. With our normalisation for the 5-form F5, the final result for

δHxi is

δHξ =

∫

∂Σ

1

16πG10

(

−δQgrav
ξ − ξa1 (vaǫaa1···a9 − 128Fa1 ···a5δAa6···a9)

)

(7.9)

where F (5) = dA(4).

Under mild assumptions [26], a necessary and sufficient condition for the existence of

Hξ is the integrability of the equation for Hξ:

(δ1δ2 − δ2δ1)Hξ = 0 (7.10)

i.e.

0 = ξ · [δ2θ(ϕ, δ1ϕ) − δ1θ(ϕ, δ2ϕ)] (7.11)

5We are specifying here to a particular symmetry generator since we are interested in the mass, but the

same procedure con be applied to the most general asymptotic symmetry generator [26].
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When this condition is satisfied we are guaranteed that an 8-form Iξ exists whose variation is

δIξ = δQξ − ξ · θ (7.12)

The value of the global charge associated with the asymptotic isometry generated by ξ is

given by a simple “surface” integral, up to an arbitrary constant which can be determined

by fixing the value of the charge for a “reference solution”.

Hξ =

∫

∂Σ
Iξ + H0

ξ . (7.13)

Notice that the 8-manifold ∂Σ in the present case reduces asymptotically to S3 × Ypq,

where S3 is a 3-sphere of radius L/Ω inside AdS5. The existence of H can be explicitly

checked for a background with the asymptotic behaviour we have discussed above for the

metric. The expression for θgrav in our gauge is proportional to

ξ · θgrav(δg) =
(

Ω2δ(gtM∂ΩgaM
√
g) − gMN√g(∂ΩδgMN − ΓPΩMδgPN )

)

ǫtΩM1...M8
(7.14)

One can verify, using the asymptotic expansion for the metric given before, that

δ[1θ(δ2]g) = 0. The crucial fact for this result to hold is that gMNδgMN = O(Ω4). This

is satisfied by our BPS solutions, but can be proven to hold more generally, even for non

necessarily BPS solutions of the equations of motion, given an appropriate asymptotic be-

haviour [33]. One can similarly verify that the contribution of the 5-form to θ is integrable.

Once we have verified the existence of Hξ, we can define the mass of a generic solution

M to the equations of motion as the value of Hξ on such a solutions

MM ≡ Hξ|M . (7.15)

7.2 Calculation of mass and R-charge

We will now proceed to the calculation of the mass and R-charge for the solutions we have

described in the previous sections. We are interested in the dependence of the mass M =

on the integration constants, C1, C3 and k. Therefore we will compute, ∂M
∂Ci

and ∂M
∂k , by

plugging in (7.9) the expressions for the background given by our solutions.

Using the expressions for the leading order, first and second subleading orders for the

metric and the 5-form given in 5 and in the appendix one can calculate

∂M

∂k
=

∫

S3×Y p,q

(

∂

∂k
Qgrav
ξ − ξ · θk

)

= 0

∂M

∂C1
=

∫

S3×Y p,q

(

∂

∂C1
Qgrav
ξ − ξ · θ1

)

= 2
πL2

4G5

∂M

∂C3
=

∫

S3×Y p,q

(

∂

∂C2
Qgrav
ξ − ξ · θ2

)

= −3
πL2

4G5

(7.16)

where G5 is the 5-dimensional Planck constant G5 = G10/V ol(Y
p,q) and

θia1···a9 =
1

16πG10

[(

∇b∂ig
a
b −∇a∂ig

b
b

)

ǫaa1···a9 − 128Fa1 ···a5∂iAa6···a9

]

(7.17)
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with

∂i =
∂

∂k
,
∂

∂Ci
. (7.18)

Putting everything together we conclude that:

M =
πL2

4G5
(2C1 − 3C2) = −πL

2Q

4G5
, (7.19)

where we have set the integration constant to zero. Some comments are in order here.

First note that the 8-form to be integrated involves directions orthogonal to t and Ω. The

relevant contribution from the 5-form is of the type F
(5)

tŷ1̃2̃3̃
∂iA

(4)

φ1̂2̂3̂
, which turns out to be

of order Ω0: ∂iA
(4)

φ1̂2̂3̂
goes like Ω2, and F

(5)

Ωφ1̂2̂3̂
= ∂ΩA

(4)

φ1̂2̂3̂
∼ Ω. On the other hand, F

(5)

tŷ1̃2̃3̃
,

the dual of the latter, goes like Ω−2. Therefore the 5-form term gives a finite contribution

to ∂iM . The gravitational contributions to ∂iM on the other hand contain terms of order

1/Ω2, therefore potentially divergent. However the coefficients of these terms turn out to be

total derivatives in the internal coordinates: more precisely, the coefficient is proportional

to d
dŷ q(ŷ), therefore it gives vanishing contribution after integrating over ŷ between the two

zeroes of q(ŷ), ŷ1 and ŷ2. Again this fact can be proven in more generality than just for

our BPS solutions [33].

Let us now proceed to verify the BPS relation between the mass M and the R-charge

R. With our normalisation of the Reeb vector, the BPS relation is given by

ML =
3

2
R (7.20)

where R is the charge which sources the KK gauge field AR. The five dimensional equation

of motion for its field strength FR are given by

τRR d ⋆5 F
R = ⋆5J

R . (7.21)

where JR is the one-form charge current and τRR comes from the KK reduction. Taking

the integral of the equation of motion, the total charge R can be read from the flux at

infinity of the field strength

R = lim
ρ̃→∞

τRR

∫

S3(ρ̃)
FR (7.22)

where S3(ρ̃) is the three dimensional sphere in AdS5 at constant t, ρ̃. In section 5 we

derived

AR ≈ − Q

2ρ̃2
dt (7.23)

at leading order in large ρ̃. Following [34] we have

τRR =
3

16πG10

∫

gψRψRvol(Y
p,q) =

1

12πG5
(7.24)

where we have used gψRψR = 4
9 as can be seen from (5.17),(5.18). We can now explicitly

write the value of the total R charge

R = − QL3

12πG5
V ol(S3) =

2

3
ML (7.25)
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which satisfies the expected relation.

Let us mention that we have computed M also using a 5-dimensional definition involv-

ing the intrinsic 5-dimensional Weyl tensor, due to Ashtekar and collaborators [24] and

rederived in [25],

Hξ = M = − 1

8πG5

∫

S3

Ẽttvol(S
3) (7.26)

where

Ẽtt =
1

2
Ω−2C̃ΩttΩ . (7.27)

where C̃abcd is the Weyl tensor of the unphysical metric g̃ = Ω2g. Beyond leading order

AdS5 and Y p,q coordinates mix, so, in general the metric on the deformed AdS5 depends on

the choice of the 5-dimensional slice inside the 10-dimensional manifold. The calculation,

done using our explicit form of the perturbed metric and allowing a slice dependence on the

internal coordinates, actually reveals that the slice dependence drops out in the Weyl tensor

and gives the correct result for the mass, as in the previous 10-dimensional computation.

The degree of generality of this result is under investigation [33].

8. Conclusions and open problems

In this paper we have performed an asymptotic, large distance, analysis of 1/2 BPS states

in IIB supergravity AdS5 × Y p,q. The corresponding differential equations are the same

as those found in [12], where 1/8 BPS states of IIB supergravity on AdS5 × S5 were

analysed. The difference resides in the boundary conditions, here we require solutions

which are asymptotic to AdS5×Y p,q. They carry non trivial charges under the asymptotic

isometries which are dual to the R-charge and one U(1) flavour charges of the quiver gauge

theories. We have shown that the charges are consistent with the holographic principle

which in this case relates N = 1 quiver gauge theories to gravity on AdS5×Y p,q. Of course

our analysis was only asymptotic: we did not address the issue of regularity of the solutions

over the full configuration space. One can analyse the solutions in the opposite regime,

near y = 0, but it is difficult to connect this region to the large y region. It would be very

interesting, although probably quite hard, due to the complexity of the system of non-

linear partial differential equations governing them, to prove the existence of non-singular

solutions, which then would be the exact analog of those found in [1] for the maximally

supersymmetric case.

In the course of the analysis we had to cope with the problem of defining the mass

of the states in the asymptotically AdS5 × Y p,q spacetime. We adopted a ten dimensional

approach, which uses the definition of charges given by Wald and collaborators. It gives a

finite (and correct) result. A different “holographic” approach to this problem, which uses

a detailed analysis of the KK reduction of the 10 dimensional theory to AdS5 can be found

in [30 – 32]. We had indications, however, that, at least for our backgrounds, an expression

due to Ashtekar and Das [24, 25], which involves the intrinsic Weyl tensor in the deformed

AdS5, also gives the correct result. This brings about various questions. For example, about

the finiteness of Wald et al. expression, one would like to establish it in general terms,
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without relying to a particular form of backgrounds. That is, one would like to prove in

general, assuming just that the equations of motion hold with the asymptotic behaviour of

the fields implied by AdS/CFT correspondence, that potentially divergent terms are total

derivatives in the internal compact manifold. Similarly, it would be interesting to see under

which circumstances the ten dimensional approach finally coincides with the 5-dimensional

one of Ashtekar et al. We hope to come back to these issues in a future publication [33].

A. Second order solutions

We give here the complete expression for the second order solutions

ρ
(2)
1 (ŷ) = −(L8(−1+cŷ)2((−4+4ac2+27k)2(−80+496cŷ−584 c2ŷ2−2696c3 ŷ3+11666c4 ŷ4

−19494c5 ŷ5 + 16281c6 ŷ6 − 6696c7ŷ7 + 1080c8ŷ8 + a3c6(−65 + 72cŷ + 20c2ŷ2) +

+a2c4(50 + 82cŷ + 159c2ŷ2 − 752c3ŷ3 + 380c4ŷ4) + ac2(−40 − 56cŷ + 756c2ŷ2

−3572c3ŷ3 + 6449c4ŷ4 − 4536c5ŷ5 + 1080c6ŷ6)) +

−8(−1 + ac2)(−4 + 4ac2 + 27k)(2 + ac2 − 6cŷ + 3c2ŷ2)2(−20 + cŷ(4 − 84C1)

−264c3ŷ3(1 + 4C1) + 120c4ŷ4(1 + 4C1) + c2ŷ2(133 + 552C1)

+ac2(5 − 60C1 + 20c2ŷ2(1 + 3C1) + 2c(ŷ + 54ŷC1)))

+32(−1 + ac2)2(2 + ac2 − 6cŷ + 3c2ŷ2)2(−10 + cŷ(2 − 84C1)

+10c4ŷ4(−1 + 10C1 + 27C2
1 ) + ac2(−2cŷ(17 + 41C1) + 10c2(ŷ + 3ŷC1)

2

+5(3 + 8C1 − 6C2)) − 2c3ŷ3(1 + 143C1 + 270C2
1 + 30C2)

+c2ŷ2(29+252C1+180C2
1 +90C2))))/(4320(−1+ac2)2(2+ac2−6cŷ+3c2ŷ2)3)

ρ
(2)
3 (ŷ) = ρ

(2)
1 (ŷ) + k(2)(ŷ)

k(2)(ŷ) = (L6(L− cLŷ)2(((1 − cŷ)(16(−1 + ac2)2(−1 + cŷ)(2 + ac2 − 6cŷ + 3c2ŷ2)2

(11+4ac2−30cŷ+15c2ŷ2)−4(−1+ac2)(−4+4ac2+27k)(2 + ac2 − 6cŷ + 3c2ŷ2)

(−44 + 284cŷ − 576c2ŷ2 + 426c3 ŷ3 − 90c4ŷ4 − 9c5ŷ5 + a2c4(−14 + 5cŷ)

+2ac2(−34 + 103cŷ − 72c2ŷ2 + 12c3ŷ3)) + (−4 + 4ac2 + 27k)2(a3c6(11 + cŷ)

+6a2c4(−17 + 25cŷ − 21c2ŷ2 + 7c3ŷ3) + 3ac2(−36 + 220cŷ − 324c2ŷ2 + 200c3 ŷ3

−51c4ŷ4 + 3c5ŷ5) + 2(−22 + 202cŷ − 666c2ŷ2 + 894c3ŷ3 − 531c4ŷ4

+117c5ŷ5))))/((1 − ac2)(2 + ac2 − 6cŷ + 3c2ŷ2)2)

−12c(4a2c3(−4 − 8C1 + 7c(ŷ + 2ŷC1) + 6C2)+ŷ(27k(2 − 8cŷ+3c3ŷ3)(1+2C1)

−4cŷ(−3 + 2cŷ)(−4 − 8C1 + 7c(ŷ + 2ŷC1) + 6C2))+ac(4c(−7+27k)ŷ(1+2C1)

+56c4ŷ4(1 + 2C1) − 4c3ŷ3(29 + 58C1 − 12C2) + 8(2 + 4C1 − 3C2)

−3c2ŷ2(−16 + 9k − 32C1 + 18kC1 + 24C2)))))/(648(2 + ac2 − 6cŷ + 3c2ŷ2)2)
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t(2)(ŷ) = (L8(−1 + cŷ)2(2187k2(−1 + cŷ)2(−2 + 14cŷ − 9c2ŷ2 + ac2(−7 + 4cŷ))

−216(−1 + ac2)k(−1 + cŷ)(2 + 2a2c4 + 27c2ŷ2 − 45c3ŷ3

+18c4ŷ4+ac2(−13+9cŷ))+16(−1 + ac2)2(−9(−1 + cŷ)2(2 + ac2 − 6cŷ + 3c2ŷ2)

+8(−1 + cŷ)(2 + ac2 − 6cŷ + 3c2ŷ2)2C1 + 1/1 − ac2(3(−(−1 + ac2)3C2

−3(−1 + ac2)2(−1 + cŷ)2C2 + 27(−1 + cŷ)6C[3]

−(−1 + ac2)(−1 + cŷ)3(−4 + 4ac2 + (9 − 9cŷ)C2))))))/(216(1 − ac2)

(2 + ac2 − 6cŷ + 3c2ŷ2)3)
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